

HCAL – SiPM upgrade requirements

Workshop in Trieste on June 2-4 2008

Inside the magnet:

- HB 144 x 19 channel HPDs (16 layers)
- HE 144 x 19 channel HPDs (16 layers)

Outside the magnet:

- HO 132 x 19 channel HPDs (1-2 layers)
- HF 1800 one inch PMTs.

CMS Ring YB0

Test Beam setup

Due to the cosine effect of the Angle we have lowest light in YB1 (YB0 has 2 layers)

Developed; Custom FBK SiPM

HO with SiPM readout

Single layer behind the magnet 4 fibers per tile

HCAL readout module 4 fibers per tile

Simple replacement of HPD with SiPMs

Typical SiPM pulse

SiPM-QIE Interface Circuit diagram

- To match the gain of the readout we used a factor of 5 lower couple capacitor
- Using R5 we hope to shape the pulse shape and cancel the tails

Pulse shape after QIE

2006 First Test Beam results

2.1 mm x 2.1 mm

CPTA 2006 1764 pixels

HPD muon in HO YB1

2007 Test beam FBK custom diode

2007 Test beam CPTA 2x2 mm diode

Linear range is worst then HPD

HPD, 300 GeV pions in center tower

IRST, 300 GeV pions in center tower

CPTA with light mixer, 300 GeV pions in center tower

Measured Non linearity due to limit # of cells

SiPM with Non linearity correction

SiPM

300 GeV pion resolution in 3x3 towers

ECAL + HCAL

HPD

No indication that late showers give worst resolution as baseline HPD

Measured Temperature coefficient

gain change with Temp Vb=30.5 at 21 C, Vb=31.2 at 30C

Production Cooling and stabilization

SiPM Cooling with the Thermoelectric Coolers for HCAL/CMS

S.Los Jan. 11, 2008

Thermal conductivity	W×m ⁻¹ ×K ⁻¹	Range
Copper	400	
Aluminum	238	
Silicon	150	
Ceramic (Al ₂ O ₃)	16	16-40
Glass	1.4	
Fiberglass	1	
Delrin	0.375	
Silicone Ceramic filled	1.4	
ZnO thermal grease	0.8	
Polyurethane foam	0.03	
Air	0.025	

	K/W
(10mm thick, 32mm Ø)	33
(1.5mm thick, 28mm ∅)	0.15
(0.2mm thick, 28mm ∅)	0.23
(0.1mm thick, 30mmWx50mmL)	42
0.07mm thick, 40mmx40mm)	36
(1mm thick, 30mmWx50mmL)	7
(1mm thick, 12mmWx40mmL)	8
(1.6mm rhick, 32mm Ø, 10mm	62
(1mm thick, 75mmx75mm)	6
(2mm thick, 40mmx40mm)	42
	(10mm thick, 32mm Ø) (1.5mm thick, 28mm Ø) (0.2mm thick, 28mm Ø) (0.1mm thick, 30mmWx50mmL) 0.07mm thick, 40mmx40mm) (1mm thick, 30mmWx50mmL) (1mm thick, 12mmWx40mmL) (1.6mm rhick, 32mm Ø, 10mm (1mm thick, 75mmx75mm) (2mm thick, 40mmx40mm)

Radiation study in October 2007

Radiation tests at Mass. General Hospital

240 MeV protons

Board no.	SiPM	Fluence (protons per $\rm cm^2$)
1	CPTA reference	0
1	$\rm CPTA~1\times1~mm^2$	10 ¹⁰
1	$\rm HC~3\times3~mm^2$	10 ¹⁰
1	${\rm FBK}\;1\times1\;{\rm mm^2}$	10 ¹⁰
2	CPTA reference	0
2	$\rm CPTA~1\times1~mm^2$	$3 imes 10^{10}$
2	$\rm HC~3\times3~mm^2$	$3 imes 10^{10}$
2	${\rm FBK}\;1\times1\;{\rm mm^2}$	$3 imes 10^{10}$
3	CPTA reference	0
3	CPTA $2.1\times2.1~{\rm mm^2}$	10 ¹⁰
3	FBK 2.8 mm	10 ¹⁰
3	FBK single pixel	10 ¹⁰
4	CPTA reference	0
4	$\rm CPTA~2.1\times2.1~mm^2$	$3 imes 10^{10}$
4	FBK 2.8 mm	$3 imes 10^{10}$
4	FBK single pixel	$3 imes 10^{10}$

Radiation damage for 240 MeV Protons

Custom 6 mm2 FBK SiPM

Scope traces during radiation

FBK 2.8 mm

1mm² diodes

I_leakage vs Ped_rms

FBK 2.8 mm

FBK single cel single PE (pedestal distributions)

Damage and QE (one day annealing) T=27 degree C

Dark Count

PDE loss due to high darkcount (cell recovery =500 ns)

Dead time of micro cells

Signal-Pedestal during radiation

Signal – **Pedestal during radiation**

Radiation levels in HCAL

- HB 10¹⁰ n/cm²/ CMS Year
- HE 3 * 10¹⁰ n/cm²/ CMS Year
- HO 10⁹ n/cm²/ CMS Year
- HF 10¹¹ n/cm²/ CMS Year

Dead time shorter??

PDE vs Company

PDE at ~3 volt overvoltage

Smaller cells vs Linearity (deadtime!)

Linearity for 10 micron cell in HB (20 p.e./MIP)

New devices with 10 micron cells

