

Development of SiPMs a FBK-irst

C.Piemonte

FBK – Fondazione Bruno Kessler, Trento, Italy piemonte@fbk.eu

Outline

- Important parameters of SiPM
- Characteristics of FBK-irst SiPMs
- Application of FBK-irst SiPM

General view of the important parameters in a SiPM

- Gain

- Noise

- Photo-detection efficiency
- Dynamic range
- Time resolution

number of carriers produced per photon absorbed

charge collected per event is the area of the exponential decay which is determined by circuital elements and bias.

$$\begin{array}{l} \textbf{Gain} = \textbf{I}_{MAX} \star \tau_{Q} = (\textbf{V}_{BIAS} - \textbf{V}_{BD}) \star \tau_{Q} = (\textbf{V}_{BIAS} - \textbf{V}_{BD}) \star \textbf{C}_{D} \\ q \qquad \textbf{R}_{Q} \qquad \textbf{q} \qquad \textbf{q} \end{array}$$

1) Primary DARK COUNT

False current pulses triggered by non photogenerated carriers

Main source of carriers: thermal generation in the depleted region.

Critical points: quality of epi silicon; gettering techniques.

2) Afterpulsing:

secondary current pulse caused by a carrier released by a trap which was filled during the primary event.

3) Optical cross-talk

Excitation of neighboring cells due to the emission of photons during an avalanche discharge

Photodetection efficiency

PDE =
$$N_{pulses} / N_{photons} = QE \times P_{01} \times FF$$

1. QE Quantum efficiency is the probability for a photon to generate a carrier that reaches the high-field region.

Maximization: anti-reflective coating, drift region location

2. P_{01} . **triggering probability** probability for a carrier traversing the high-field to trigger the avalanche.

Maximization:1. high overvoltage2. photo-generation in the p-side of the junction
(electrons travel through the high-field region)

3. FF. Fill Factor

"standard" SiPMs suffer from low FF due to the structures present around each micro-cell (guard ring, trench) C. Piemonte

Time resolution

Statistical Fluctuations in the first stages of the current growth:

- 1. Photo-conversion depth
- 2. Vertical Build-up at the very beginning of the avalanche

 - * for short wavelength light the first contribution is negligible
- 3. Lateral Propagation

the avalanche spreading is faster if generation takes place in the center

FBK-irst SiPMs

Development of SiPMs started in 2005 in collaboration with INFN.

• IRST:

development of the technology for the production of SiPMs (large area devices/matrices) + functional characterization

• INFN (Pisa, Bari, Bologna, Perugia, Trento):

development of systems, with optimized read-out electronics, based on SiPMs for applications such as:

- tracking with scintillating fibers;
- PET;
- TOF;
- calorimetry

IRST technology

[C. Piemonte "A new Silicon Photomultiplier structure for blue light detection" NIMA 568 (2006) 224-232]

- 1) Substrate: p-type epitaxial
- 2) Very thin n+ layer
- 3) Polysilicon quenching resistance
- 4) Anti-reflective coating optimized for λ ~420nm

Layout: from the first design...(2005)

SiPM structure:

- 25x25 cells
- microcell size: 40x40µm²

Geometry NOT optimized for maximum PDE (max fill factor ~ 30%)

... to the new devices (i) (2007)

Fill factor: $40x40\mu m^2$ => ~ 40% $50x50\mu m^2$ => ~ 50% $100x100\mu m^2$ => ~ 76%

...to the new devices (ii)

Circular: diameter 1.2mm diameter 2.8mm

Matrices: 4x4 elements of 1x1mm² SiPMs

Linear arrays: 8,16,32 elements of 1x0.25mm² SiPMs

Tests performed at FBK

IV measurement

fast test to verify functionality and uniformity of the properties.

Functional characterization in dark

C. Piemonte et al. "Characterization of the first prototypes of SiPM fabricated at ITC-irst" IEEE TNS, February 2007

for a complete characterization of the output signal and noise properties (signal shape, gain, dark count, optical cross-talk, after-pulse)

Photo-detection efficiency

Very useful fast test. Gives info about:

- Device functionality
- Breakdown voltage
- (Dark rate)x(Gain) uniformity
- Quenching resistance (from forward IV)

Performed on several thousands of devices at wafer level

Signal properties – NO amplifier

Dark signals are exactly equal to photogenerated signals functional measurements in dark give a complete picture of the SiPM functioning

Thanks to the large gain it is possible to connect the SiPM directly to the scope

Signal properties – with amplifier

A voltage amplifier allows an easier characterization, but attention must be paid when determining the gain

Let's look at the electro-optical characteristics of these devices:

1x1mm² (400 cells)

4x4mm² (6400 cells)

Micro-cell size: 50x50µm²

1x1mm2 SiPM - 50x50µm2 cell

<u>Set up</u>: SiPM current signal converted into voltage on a 50Ω resistor and amplified with a wide-band voltage amplifier.

Important to note:

The value of the quenching resistor increases with decreasing temperature and so the time constant follows the same trend

1x1mm² SiPM - 50x50µm² cell

ニっく

C. Piemonte

$4x4mm^2$ SiPM - $50x50\mu m^2$ cell

4x4mm² SiPM - 50x50µm² cell

Charge spectra when illuminating the device with short light pulses

Same conclusions as for the previous device:

• Excellent cell response uniformity over the entire device (6400 cells)

Width of peaks dominated by electronic noise

Photo-detection efficiency (1)

Stage with 3D micrometers movement (50um precision)

Photo-detection efficiency (2)

Two methods: DC current and Pulses count

...what is the PDE of these devices?

Measured on 1x1mm² SiPM using photon counting technique

Broad peak between 450 and 600nm

- Laser: wavelength: 400 or 800nm
 - pulse width: ~60fs
 - pulse period: 12.34ns with time jitter <100fs
- Filters: to have less than 1 photodetection/laser pulse
- SiPMs: 3 devices from 2 different batches measured

C. Pier.

Time resolution (2)

Distribution of the time difference

Timing performance (σ) as a function of the over-voltage

Microcell functionality measurement (measurement at RWTH Aachen)

setup

Microcell functionality measurement fillfactor

Measurement of microcell eficiency with a 5 um LED spot diameter

LED spot diameter

Microcell functionality measurement

pixel quality check

Some applications and projects in which we are involved

SiPM matrix – for PET (1)

First, small monolithic matrix of SiPM: Element **1x1mm²** Micro-cell size: **40x40µm²**

SiPM matrix – for PET (2)

Tests are ongoing in Pisa (DASiPM project, A. Del Guerra) on these devices coupled with pixellated and slab LSO scintillators

> Na²² spectrum with LSO on a **single** SiPM (1x1mm², 40x40μm² cell)

NEXT STEP: Larger monolithic matrices

Circular SiPM - 50x50um² cell for CMS – Outer Hadron Calorimeter

module with 18 SiPMs

Each SiPM reads a bundle of 5 fibers

Muon response using SiPMs

Muon response using HPD at 8kV

Array of SiPM for Fiber Tracking

INFN PG (R. Battiston) + Uni Aachen

32x array connected to ASIC designed for strip detectors => capacitive divider at the input to reduce signal

Response uniformity under LED illumination

HYPERimage project

Seventh Framework programme, FP7-HEALTH-2007-A

	Short name	Country	
Philips Research <u>Aachen</u> / Hamburg	Philips	DE CO	ordinato
University of Heidelberg	UH	DE	
Foundation Bruno Kessler - Irst	FBK	IT	
King's College London	KCL	UK	
Fundación Centro Nacional de Investigaciones Cardiovasculares Melchor	CNIC	ES	
The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital	NKI	NL	
Universitätsklinikum Hamburg-Eppendorf	UKE	DE	
IBBT – Gent	IBBT	В]

Conclusion

- The SiPM is going to play a major role as a detector for low intensity light, because of:
 - comparable/better proprieties than PMT;
 - the inherent characteristics of a solid-state det..
- IRST has been working on SiPMs (GM-APDs) for about
 - 3 years obtaining very good results in:
 - performance;
 - reproducibility;
 - yield;
 - understanding of the device.